Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add filters








Year range
1.
Nutrition Research and Practice ; : 180-189, 2017.
Article in English | WPRIM | ID: wpr-20676

ABSTRACT

BACKGROUND/OBJECTIVES: Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS: Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha (HNF-1α), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta (GSK-3β) expression levels. The α-glucosidase inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS: CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through HNF-1α expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and GSK-3β, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of α-glucosidase inhibitory activity than that from acarbose. CONCLUSION: CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.


Subject(s)
Acarbose , alpha-Glucosidases , AMP-Activated Protein Kinases , Blotting, Western , Cordyceps , Feeding Behavior , Glucokinase , Glucose Transport Proteins, Facilitative , Glucose , Glycogen , Glycogen Synthase Kinase 3 , Glycolysis , Hep G2 Cells , Hepatocyte Nuclear Factor 1-alpha , Hypoglycemic Agents , Liver , Metabolic Diseases , Metabolism , Motor Activity , Obesity , Oxidoreductases , Phosphatidylinositol 3-Kinase , Phosphoenolpyruvate , Phosphorylation , Proto-Oncogene Proteins c-akt , Pyruvic Acid , Social Conditions , Water
2.
Experimental Neurobiology ; : 123-129, 2011.
Article in English | WPRIM | ID: wpr-7985

ABSTRACT

Neural tissue is arisen from presumptive ectoderm via inhibition of bone morphogenetic protein (BMP) signaling during Xenopus early development. Previous studies demonstrate that ectopic expression of dominant negative BMP4 receptor (DNBR) produces neural tissue in animal cap explants (AC) and also increases the expression level of various genes involved in neurogenesis. To investigate detail mechanism of neurogenesis in transcriptional level, we analyzed RNAs increased by DNBR using total RNA sequencing analysis and identified several candidate genes. Among them, xCITED2 (Xenopus CBP/p300-interacting transcription activator) was induced 4.6 fold by DNBR and preferentially expressed in neural tissues at tadpole stage. Ectopic expression of xCITED2 induced anterior neural genes without mesoderm induction and reduced BMP downstream genes, an eye specific marker and posterior neural marker. Taken together, these results suggest that xCITED2 may have a role in the differentiation of anterior neural tissue during Xenopus early development.


Subject(s)
Animals , Bone Morphogenetic Proteins , Ectoderm , Embryonic Structures , Eye , Larva , Mesoderm , Neurogenesis , RNA , Sequence Analysis, RNA , Xenopus
3.
Experimental Neurobiology ; : 83-89, 2010.
Article in English | WPRIM | ID: wpr-162261

ABSTRACT

Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiation of primary cortical neuron cells. Primary cortical neuron cells were prepared from rat embryos of embryonic day 18 and treated with NMMA (NOS inhibitor) or PTIO (NO scavenger). Neurite outgrowth of neuron cells was counted and the mRNA levels of p21, p27, c-jun and c-myc were measured by RT-PCR. Neurite outgrowth of primary cortical neuron cells was inhibited a little by NOS inhibitor and completely by NO scavenger. The mRNA levels of p21 and p27, differentiation-induced growth arrest genes were increased during differentiation, but they were decreased by NOS inhibitor or NO scavenger. On the other hand, the level of c-jun mRNA was not changed and the level of c-myc mRNA was increased during differentiation differently from previously reported. The levels of these mRNA were reversed in NOS inhibitor- or NO scavenger-treated cells. The level of nNOS protein was not changed but NOS activity was inhibited largely by NOS inhibitor or NO scavenger. These results suggest that NO is an essential mediator for neuronal differentiation of primary cortical neuron cells.


Subject(s)
Animals , Rats , Butyrates , Cyclic N-Oxides , Embryonic Structures , Hand , Imidazoles , Neurites , Neurons , Nitric Oxide , Nitric Oxide Synthase , PC12 Cells , RNA, Messenger
4.
Laboratory Animal Research ; : 109-115, 2010.
Article in English | WPRIM | ID: wpr-153253

ABSTRACT

Neurogenesis is the process that develops neuroectoderm from ectoderm. Bone morphogenetic protein (BMP) inhibition in ectodermal cells is necessary and sufficient for neurogenesis in Xenopus embryos. To isolate genes involved in early neurogenesis, Xenous Affymetrix gene chips representing 14,400 genes were analyzed in early stage of neuroectodermal cells that were produced by inhibition of BMP signaling with overexpression of a dominant-negative receptor. We identified 265 candidate genes including 107 ESTs which were newly expressed during the early neurogenesis by blocking BMP signaling. The candidates of 10 ESTs were selected and examined for upregulation in neuroectoderm. Five EST genes were confirmed to be upregulated in neuroectoderm and examined for time-dependent expression patterns in intact embryos. Two EST genes were cloned and identified as a homology of CYP26c (Xl.1946.1.A1_at) and Kielin containing VWC domain (Xl.15853.1.A1_at). One of them, CYP26c, was further characterized for its transcriptional regulation and role of anterior-posterior patterning during neurogenesis. Taken together, we analyzed and characterized genes expressed in early neurogenesis. The results suggest that neurogenesis by inhibition of BMP provides useful system to isolate genes involved in early events of neurogenesis during early vertebrate embryogenesis.


Subject(s)
Female , Pregnancy , Bone Morphogenetic Proteins , Clone Cells , DNA, Complementary , Ectoderm , Embryonic Development , Embryonic Structures , Expressed Sequence Tags , Neural Plate , Neurogenesis , Oligonucleotide Array Sequence Analysis , Up-Regulation , Vertebrates , Xenopus
5.
Experimental & Molecular Medicine ; : 335-344, 2010.
Article in English | WPRIM | ID: wpr-94340

ABSTRACT

Rat pheochromocytoma (PC12) cells have been used to investigate neurite outgrowth. Nerve growth factor (NGF) has been well known to induce neurite outgrowth from PC12 cells. RhoA belongs to Ras-related small GTP-binding proteins, which regulate a variety of cellular processes, including cell morphology alteration, actin dynamics, and cell migration. NGF suppressed GTP-RhoA levels after 12 h in PC12 cells and was consistently required for a long time to induce neurite outgrowth. Constitutively active (CA)-RhoA suppressed neurite outgrowth from PC12 cells in response to NGF, whereas dominant-negative (DN)-RhoA stimulated it, suggesting that RhoA inactivation is essential for neurite outgrowth. Here, we investigated the mechanism of RhoA inactivation. DN-p190RhoGAP abrogated neurite outgrowth, whereas wild-type (WT)-p190RhoGAP and WT-Src synergistically stimulated it along with accelerating RhoA inactivation, suggesting that p190RhoGAP, which can be activated by Src, is a major component in inhibiting RhoA in response to NGF in PC12 cells. Contrary to RhoA, Rap1 was activated by NGF, and DN-Rap1 suppressed neurite outgrowth, suggesting that Rap1 is also essential for neurite outgrowth. RhoA was co-immunoprecipitated with Rap1, suggesting that Rap1 interacts with RhoA. Furthermore, a DN-Rap-dependent RhoGAP (ARAP3) prevented RhoA inactivation, abolishing neurite formation from PC12 cells in response to NGF. These results suggest that NGF activates Rap1, which, in turn, up-regulates ARAP3 leading to RhoA inactivation and neurite outgrowth from PC12 cells. Taken together, p190RhoGAP and ARAP3 seem to be two main factors inhibiting RhoA activity during neurite outgrowth in PC12 cells in response to NGF.

6.
Nutrition Research and Practice ; : 105-112, 2007.
Article in English | WPRIM | ID: wpr-189519

ABSTRACT

Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid (at 200 micrometer) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered SA-beta-gal positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of 20 micrometer of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.


Subject(s)
Humans , Aconitate Hydratase , Aging , Ascorbic Acid , Blotting, Western , Cell Cycle , DNA Damage , DNA , Fibroblasts , Flow Cytometry , Hydrogen Peroxide , Oxidative Stress , Reactive Oxygen Species
7.
Experimental & Molecular Medicine ; : 14-26, 2007.
Article in English | WPRIM | ID: wpr-37559

ABSTRACT

Primary neuronal culture is a powerful tool to study neuronal development, aging, and degeneration. However, cultured neurons show signs of cell death after 2 or 3 weeks. Although the mechanism underlying this phenomenon has not been elucidated, several preventive methods have been identified. Here we show that the neuronal loss in primary cortical culture involves calpain activation and subsequent neuronal cell death. Neuronal loss during cultivation showed destruction of neurites and synapses, and a decrease in neuron numbers. micro-Calpain and micro-calpain were initially activated and accumulated by increased RNA expression. This neuronal death exhibited neurodegenerative features, such as conversion of p35 to p25, which is important in the developmental process and in the pathogenesis of Alzheimer's disease. But, postnatal and aged rat cortex did not show calpain activation and prolonged processing of p35 to p25, in contrast to the long-term culture of cortical neurons. In addition, the inhibition of calpains by ALLM or ALLN blocked the conversion of p35 to p25, indicating that the calpain activity is essential for the neurodegenerative features of cell death. Taken together, this study shows that the neuronal loss in primary cortical cultures involves neurodegeneration-like cell death through the activation of calpains and the subsequent processing of p35 to p25, but not developmental apoptosis or aging. Our results suggest that the long term primary culture of cortical neurons represent a valuable model of neurodegeneration, such as Alzheimer's disease.


Subject(s)
Rats , Animals , Transcription, Genetic/genetics , Time Factors , Phosphotransferases/metabolism , Neurons/cytology , Cells, Cultured , Cell Shape , Caspases/antagonists & inhibitors , Calpain/antagonists & inhibitors , Apoptosis
8.
Experimental & Molecular Medicine ; : 295-301, 2006.
Article in English | WPRIM | ID: wpr-51260

ABSTRACT

The inducible 70 kDa heat shock proteins (Hsp70) in mice are encoded by two almost identical genes, hsp70.1 and hsp70.3. Studies have found that only hsp70.1 is induced by hypertonic stress while both hsp70.1 and hsp70.3 genes are expressed in response to heat shock stress. It is unclear if the human counterparts, hsp70-2 and hsp70-1, are differentially regulated by heat shock and osmotic stress. This study found that only hsp70-2 was induced by hypertonic stress in human embryonic kidney epithelial cells and fibroblasts, while heat shock stress induced both hsp70-1 and hsp70-2. The human hsp70-2 promoter region contains three TonE (tonicity-responsive enhancer) sites, which were reported to play an important role in the response to hypertonicity. When the reporter plasmids containing different parts of the 5' flanking region of hsp70-2 were transfected into human embryonic kidney epithelial cells or fibroblasts, one TonE site at -135 was found to play a key role in the response to hypertonicity. The inactivation of the TonE site using site-directed mutagenesis led to the complete loss of induction by hypertonicity, which demonstrates the essential role of the TonE site. This suggests that the TonE site and the TonEBP (TonE binding protein) are the major regulators for the cellular response against high osmolarity in human kidney tissue.


Subject(s)
Humans , Transcription, Genetic/drug effects , Transcription Factors/genetics , Saline Solution, Hypertonic/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Protein Binding , Promoter Regions, Genetic/genetics , Point Mutation , Mutagenesis, Site-Directed , HSP70 Heat-Shock Proteins/genetics , Gene Expression Regulation/drug effects , DNA-Binding Proteins/genetics , Cell Line , Binding Sites/genetics , Base Sequence , 5' Flanking Region/genetics
9.
Genomics & Informatics ; : 23-32, 2006.
Article in English | WPRIM | ID: wpr-109762

ABSTRACT

In order to investigate the molecular basis of the aging process in brain, we have employed high-density oligonucleotide microarrays providing data on 10,108 gene clusters to define transcriptional patterns in three brain regions, cerebral cortex, cerebellum, and hippocampus. Comparison of the expression patterns between young (6-week-old) and aged (17-month-old) C57BL/6 male micerevealed that about ten percent (1098) of the genes showed a significant change in the expression level in at least one of the three tissues. Among them, 23 genes were upregulated and 62 genes were downregulated in all three tissues of the old mice. The number of genes upregulated exclusively in hippocampus (337) was much larger compared to other tissues. Gene ontology-based analysis showed the genes related with signal transduction or molecular transports are more likely to be upregulated than downregulated in the aging process of hippocampus. These data may provide some useful means for elucidating the molecular aspect of aging in hippocampus and other regions in brain.


Subject(s)
Animals , Humans , Male , Mice , Aging , Brain , Cerebellum , Cerebral Cortex , DNA , Gene Expression , Hippocampus , Multigene Family , Oligonucleotide Array Sequence Analysis , Signal Transduction , Transcriptome
10.
Experimental & Molecular Medicine ; : 575-587, 2005.
Article in English | WPRIM | ID: wpr-191493

ABSTRACT

Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47 PHOX. Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47 PHOX may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.


Subject(s)
Animals , Mice , Cell Line , Cell Membrane , Cytosol , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Macrophage-1 Antigen/pharmacology , Macrophages/drug effects , Myosin-Light-Chain Kinase/metabolism , Opsonin Proteins/blood , Phagocytosis , Protein Transport , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Superoxides/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Zymosan/blood , p38 Mitogen-Activated Protein Kinases/metabolism , rhoA GTP-Binding Protein/antagonists & inhibitors
11.
Genomics & Informatics ; : 66-72, 2005.
Article in English | WPRIM | ID: wpr-40263

ABSTRACT

The epidermis is a physiological barrier to protect organisms against environment. During the aging process, skin tissues undergo various changes including morphological and functional changes. The transcriptional regulation of genes is part of cellular reaction of aging process. In order to examine the changes of gene expression during the aging process, we used the primary cell culture system of human keratinocytes. Since UV radiation is the most important environmental skin aggressor, causing skin cancer and other problems including premature skin aging, we examined the changes of gene expression in human keratinocytes after UV irradiation using oligonucleotide microarray containing over 10,000 genes. We also compared the gene expression patterns of the senescent and UV treated cells. Expression of the variety of genes related to transcription factors, cell cycle regulation, immune response was altered in human keratinocytes. Some of down-regulated genes are represented in both senescent and UV treated cells. The results may provide a new view of gene expression following UVB exposure and aging process in human keratinocytes.


Subject(s)
Humans , Aging , Cell Cycle , Epidermis , Gene Expression , Keratinocytes , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Skin , Skin Aging , Skin Neoplasms , Transcription Factors
12.
Experimental & Molecular Medicine ; : 43-51, 2004.
Article in English | WPRIM | ID: wpr-190975

ABSTRACT

Enzyme/prodrug approach is one of the actively developing areas for cancer therapy. In an effort to develop more effective enzyme/prodrug systems, cell-permeable cytosine deaminase was produced by fusing yeast cytosine deaminase (yCD) in frame with RKKRRQRRR domain of HIV-1 Tat which is an efficient delivery peptide of the foreign proteins into cells. The purified Tat-yCD fusion protein expressed in Escherichia coli was readily transduced into mammalian cells in a time- and dose-dependent manner. A significant level of the transduced Tat-yCD protein was recovered in the cell and was stable for 24 h as indicated by both results of the enzymatic assay of 5-fluorocytosine (5-FC) conversion to 5-fluorouracil (5-FU) and Western blot analysis. The cells transduced with Tat-yCD become highly sensitive to the cytotoxicity of 5-FC, while cells treated with yCD are unaffected by 5-FC. In addition, a strong bystander effect was observed with conditioned media from cells transduced with Tat-yCD added to non-transduced cells. Tat-yCD fusion protein demonstrated here for its ability to transduce into cells and convert nontoxic prodrug 5-FC to the toxic antimetabolite 5-FU, may be a useful approach for cancer therapy.


Subject(s)
Animals , Humans , Antimetabolites/metabolism , Bystander Effect , Cytosine Deaminase/genetics , Flucytosine/metabolism , Gene Products, tat/chemistry , Genetic Vectors/genetics , HIV-1/metabolism , HeLa Cells/drug effects , Prodrugs/metabolism , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Transduction, Genetic
13.
Experimental & Molecular Medicine ; : 468-475, 2004.
Article in English | WPRIM | ID: wpr-226074

ABSTRACT

The heterodimeric c-Jun/c-Fos, an activator protein-1 (AP-1) has been implicated in mesoderm induction (Dong et al., 1996; Kim et al., 1998) whereas the homodimer of c-Jun was reported to be involved in neural inhibition during the early development of Xenopus embryos. During the early vertebrate development AP-1 involvement in the neural induction is still not clearly understood. We report here that AP-1 has a role in Zic3 expression, a critical proneural gene and a primary regulator of neural and neural crest development (Nakata et al., 1997; Nakata et al., 1998). AP-1 was able to induce the Zic3 gene in a dose dependent manner but other homo- or hetero-dimeric proteins, such as c-Jun/c-Jun, JunD/FosB or JunD/Fra-1 were not. The inhibition of AP-1 activity using morpholino antisenses of c-jun mRNAs blocked the Zic3 expression induced by activin. In addition, co-injection of c-jun mRNA rescued the down-regulated Zic3 expression. The promoter region of isolated Zic3 genomic DNA was found to possess several consensus-binding site of AP-1. Thus, in the functional assays, AP-1 could increase promoter activity of Zic3 gene. These findings suggest that proneural gene, Zic3 may be regulated by heterodimeric AP-1(c-Jun/c-Fos) and it may have a role in activin signaling for the regulation of neural specific gene, Zic3.


Subject(s)
Animals , Activins/pharmacology , Base Sequence , Binding Sites/genetics , Consensus Sequence/genetics , Dimerization , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-jun/genetics , RNA, Antisense/genetics , Transcription Factor AP-1/genetics , Transcription Factors/genetics , Transcription, Genetic , Up-Regulation , Xenopus Proteins/genetics , Xenopus laevis/embryology
14.
Immune Network ; : 216-223, 2004.
Article in Korean | WPRIM | ID: wpr-13655

ABSTRACT

BACKGROUND: It is well known that IgA isotype switching is induced by TGF-beta1. LPS-activated mouse normal B cells well differentiate into IgA secreting plasma cells under the influence of TGF-beta1. Nevertheless, there are lots of difficulties in studying normal B cells in detail because it is not simple to obtain highly purified B cells, showing low reproducibility and transfection efficacy, moreover impossible to keep continuous culture. To overcome these obstacles, it is desperately needed to develop B cell line which acts like normal B cells. In the present study, we investigated whether CH12F3-2A lymphoma cells are appropriate for studying IgA isotype switching event. METHODS: CH12F3-2A B cell line was treated with LPS and TGF-beta1, then levels of germ-line (GL) transcripts were measured by RT-PCR, and GLalpha promoter activity was measured by luciferase assay. In addition, membrane IgA (mIgA) expression and IgA secretion were determined by FACS and ELISA, respectively. RESULTS: TGF-beta1, regardless of the presence of LPS, increased level of GLalpha transcripts but not GLgamma2b transcripts. However, IgA secretion was increased dramatically by co-stimulation of LPS and TGF-beta1. Both mIgA and IgA secretion in the presence of TGF-beta1 were further increased by over-expression of Smad3/4. Finally, GLalpha promoter activity was increased by TGF-beta1. CONCLUSION: CH12F3-2A cell line acts quite similarly to the normal B cells which have been previously reported regarding IgA expression. Thus, CH12F3-2A lymphoma cell line appears to be adequate for the investigation of the mechanism(s) of IgA isotype switching at the cellular and molecular levels.


Subject(s)
Animals , Mice , B-Lymphocytes , Cell Line , Enzyme-Linked Immunosorbent Assay , Immunoglobulin A , Immunoglobulin Class Switching , Luciferases , Lymphoma , Membranes , Plasma Cells , Transfection , Transforming Growth Factor beta1
15.
Experimental & Molecular Medicine ; : 325-335, 2003.
Article in English | WPRIM | ID: wpr-171369

ABSTRACT

Phagocytosis by inflammatory cells is an essential step and a part of innate immunity for protection against foreign pathogens, microorganism or dead cells. Phagocytosis, endocytotic events sequel to binding particle ligands to the specific receptors on phagocyte cell surface such as Fcgamma recptor (FcgammaR), complement receptor (CR), beta-glucan receptor, and phosphatidylserine (PS) receptor, require actin assembly, pseudopod extension and phagosome closure. Rho GTPases (RhoA, Cdc42, and Rac1) are critically involved in these processes. Abrupt superoxide formation, called as oxidative burst, occurs through NADPH oxidase complex in leukocytes following phagocytosis. NADPH oxidase complex is composed of membrane proteins, p22(PHOX)and gp91(PHOX), and cytosolic proteins, p40(PHOX), p47(PHOX)and p67(PHOX). The cytosolic subunits and Rac-GTP are translocated to the membrane, forming complete NADPH oxidase complex with membrane part subunits. Binding of imunoglobulin G (IgG)- and complement-opsonized particles to FcgammaR and CR of leukocytes induces apoptosis of the cells, which may be due to oxidative burst and accompanying cytochrome c release and casapase-3 activation.


Subject(s)
Animals , Humans , Apoptosis/physiology , Macrophages/cytology , NADPH Oxidases/metabolism , Phagocytosis/physiology , Reactive Oxygen Species/metabolism , Superoxides/metabolism
16.
Experimental & Molecular Medicine ; : 379-384, 2003.
Article in English | WPRIM | ID: wpr-171363

ABSTRACT

Dexamethasone converts pluripotent pancreatic AR42J cells into exocrine cells expressing digestive enzymes. In order to address molecular mechanism of this differentiation, we have investigated the role of mitogen-activated protein (MAP) kinase pathway and gene expressions of p21(waf1/cip1)and nuclear oncogenes (c-fos and c-myc) during AR42J cell differentiation. Dexamethasone markedly increased the intracellular and secreted amylase contents as well as its mRNA level. However, cell growth and DNA content were significantly decreased. With these phenotypic changes, AR42J cells induced transient mRNA expression of p21(waf1/cip1)gene, which reached maximal level by 6 h and then declined gradually toward basal state. In contrast to p21(waf1/cip1), c-fos gene expression was transiently inhibited by 6 h and then recovered to basal level by 24 h. Increased c-myc expression detected after 3 h, peaked by 12 h, and remained elevated during the rest of observation. Dexamethasone inhibited epidermal growth factor-induced phosphorylation of extracellular signal regulated kinase. Inhibition of MAP kinase pathway by PD98059 resulted in further elevation of the dexamethasone-induced amylase mRNA and p21(waf1/cip1)gene expression. These results suggest that p21(waf1/cip1)and nuclear oncogenes are involved in dexamethasone-induced differentiation and inhibition of MAP kinase pathway accelerates the conversion of undifferentiated AR42J cells into amylase-secreting exocrine cells.


Subject(s)
Animals , Rats , Amylases/genetics , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cyclins/genetics , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Genes, fos/genetics , Genes, myc/genetics , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Pancreas/cytology , RNA, Messenger/genetics
17.
Experimental & Molecular Medicine ; : 211-221, 2003.
Article in English | WPRIM | ID: wpr-10309

ABSTRACT

Phagocytosis of serum- and IgG-opsonized zymosan (SOZ and IOZ, respectively) particles into J774A.1 macrophages induced apoptosis of the cells, accompanied by the expression of p21(WAF1), one of cyclin-dependent protein kinase (CDK) inhibitors. Furthermore, phagocytosis of SOZ and IOZ particles into macophages induced superoxide formation. Tat-superoxide dismutase (SOD), which is readily transduced into the cells using Tat-domain, protected the cells from the apoptosis induced by phagocytosis of SOZ and IOZ particles. lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma) also caused the apoptosis of the cells. However, Tat-SOD could not protect the cells from LPS/IFN-gamma induced apoptosis, suggesting that apoptosis mechanisms involved are different from each other. In the present study, we determined the amounts of nitric oxide (NO) produced by SOZ, IOZ, and LPS/IFN-gamma, and found that SOZ and IOZ did not induce the generation of NO in macrophages, whereas LPS/ IFN-gamma did. The apoptosis due to phagocytosis was accompanied with the release of cytochrome c from mitochondrial membrane to cytosolic fraction. Furthermore, SOZ and IOZ induced the cleavage of procasapase-3 (35 kDa) to give rise to an active caspase-3 (20 kDa), which was blocked by Tat- SOD but not by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. On the other hand, LPS/IFN-gamma caused the activation of procaspase-3, which was blocked by PTIO but not by Tat-SOD. Taken together, phagocytosis of SOZ and IOZ particles induced apoptosis through superoxide but not NO in macrophages, accompanied with the release of cytochrome c and the activation of caspase-3.


Subject(s)
Apoptosis/immunology , Caspases/metabolism , Cell Line , Cyclins/biosynthesis , Cytochromes c/metabolism , Immunoglobulin G/immunology , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/immunology , Nitric Oxide/metabolism , Opsonin Proteins/immunology , Phagocytosis/physiology , Superoxide Dismutase/metabolism , Superoxides/metabolism , Zymosan
18.
Experimental & Molecular Medicine ; : 434-443, 2002.
Article in English | WPRIM | ID: wpr-13045

ABSTRACT

The release of neurotransmitter is regulated in the processes of membrane docking and membrane fusion between synaptic vesicles and presynaptic plasma membranes. Synaptic vesicles contain a diverse set of proteins that participate in these processes. Small GTP-binding proteins exist in the synaptic vesicles and are suggested to play roles for the regulation of neurotransmitter release. We have examined a possible role of GTP-binding proteins in the regulation of protein phosphorylation in the synaptic vesicles. GTPgammaS stimulated the phosphorylation of 46 kappa Da protein (p46) with pI value of 5.0-5.2, but GDPbetaS did not. The p46 was identified as protein interacting with C-kinase 1 (PICK-1) by MALDI-TOF mass spectroscopy analysis, and anti-PICK-1 antibody recognized the p46 spot on 2-dimensional gel electrophoresis. Rab guanine nucleotide dissociation inhibitor (RabGDI), which dissociates Rab proteins from SVs, did not affect phosphorylation of p46. Ca2+/ calmodulin (CaM), which causes the small GTP- binding proteins like Rab3A and RalA to dissociate from the membranes and stimulates CaM- dependnet protein kinase(s) and phosphatase, strongly stimulate the phosphorylation of p46 in the presence of cyclosporin A and cyclophylin. However, RhoGDI, which dissociates Rho proteins from membranes, reduced the phosphorylation of p46 to the extent of about 50%. These results support that p46 was PICK-1, and its phosphorylation was stimulated by GTP and Ca2+/CaM directly or indirectly through GTP-binding protein(s) and Ca2+/CaM effector protein(s). The phosphorylation of p46 (PICK-1) by GTP and Ca2+/CaM may be important for the regulation of transporters and neurosecretion.


Subject(s)
Animals , Rats , Calcium/metabolism , Calmodulin/metabolism , Carrier Proteins/chemistry , Guanine Nucleotide Dissociation Inhibitors/metabolism , Guanosine Triphosphate/metabolism , Molecular Weight , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation/drug effects , Recombinant Fusion Proteins/chemistry , Synaptic Membranes/chemistry , Synaptic Vesicles/chemistry
19.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144649

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
20.
Experimental & Molecular Medicine ; : 220-225, 2001.
Article in English | WPRIM | ID: wpr-144637

ABSTRACT

Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.


Subject(s)
Cattle , Rats , Aging , Animals , Brain/metabolism , Calcium/pharmacology , Comparative Study , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Molecular Weight , Phosphorylation/drug effects , Rats, Sprague-Dawley , Synaptic Membranes/metabolism , Synaptosomes/metabolism , cdc42 GTP-Binding Protein/biosynthesis , rab3A GTP-Binding Protein/metabolism , rab5 GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL